Kulokekahilide-2, a Cytotoxic Depsipeptide from a Cephalaspidean Mollusk Philinopsis speciosa ${ }^{\dagger}$

Yoichi Nakao,*,† Wesley Y. Y oshida, ${ }^{\ddagger}$ Yuuki Takada, ${ }^{\perp}$ J unji Kimura, ${ }^{\perp}$ Liu Yang, ${ }^{\S}$ Susan L. Mooberry, ${ }^{\S, ॥}$ and Paul J. Scheuer ${ }^{\ddagger}$
Department of Chemistry, University of Hawaii at Manoa, 2545 The Mall, Honolulu, Hawaii 96822-2275, Natural Products Program, Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, Hawaii 96813, and Department of Chemistry, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe,
Sagamihara, 229-8558, J apan

Received J anuary 24, 2004

A cytotoxic depsipeptide, kulokekahilide-2 (1), was isolated from a cephalaspidean mollusk, Philinopsis speciosa. The structure elucidation of kulokekahilide-2 was carried out by spectroscopic analysis and chemical degradation. Kulokekahilide-2 showed potent cytotoxicity against several cell lines (P388, SK-OV-3, MDA-MB-435, and A-10 with IC_{50} values ranging from 4.2 to 59.1 nM) indicating cancer cell selectivity.

The marine carnivorous mollusk Philinopsis speciosa is a bountiful source of structurally and biologically unique compounds. ${ }^{1}$ Among them, the most characteristic constituents are depsipeptides, ${ }^{1 c-f}$ which are reminiscent of those from other marine mollusks such as Dolabella auricularia ${ }^{2}$ and Onchidium sp. ${ }^{3}$ The Philinopsis compounds are thought to be sequestered by predation of smaller sized mollusks such as the sea hare Stylocheilus longicaudus, which feeds on cyanobacteria. ${ }^{1 d}$ Further investigation of the cytotoxic fractions of P. speciosa led to the isolation of a new depsipeptide, kulokekahilide-2 (1), ${ }^{\text {lf }}$ which is closely related to aurilide (2) isolated from D. auricularia. ${ }^{2 a}$

The organic extract of P. speciosa was evaporated and separated by the modified Kupchan procedure ${ }^{4}$ to yield n-hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and aqueous MeOH extracts. The $\mathrm{CH}_{2}-$ Cl_{2} extract was purified by a two-step ODS flash chromatography process, followed by gel filtration, and amino column chromatography. The fraction containing peptides was further separated by sequential ODS HPLC to give kulokekahilide-2 (1; $3.4 \mathrm{mg} ; 3.8 \times 10^{-5} \%$ yield based on wet weight).

The molecular formula of kulokekahilide-2 (1) was established as $\mathrm{C}_{44} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{10}$ on the basis of HRFABMS [m/z $826.4942(\mathrm{M}+\mathrm{H})^{+}(\Delta-2.4 \mathrm{mmu})$]. In the ${ }^{1} \mathrm{H} N M R$ spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right), \mathbf{1}$ exhibited two sets of signals in a 1:1 ratio, which was later assigned to two conformers, 1cis and 1trans, derived from the cis-trans isomerism at the amide bond between N -methylphenylalanine (MePhe) and N methylglycine (Sar).

Detailed analysis of the 2D NMR data enabled us to assign all signals for both 1cis and 1trans and revealed a

[^0]structural framework consisting of peptidal and polyketidal moieties (substructures a and b, respectively). Substructure a was composed of five amino acids, Ile, Sar, MePhe, and two Ala, and 2-hydroxyisocaproic acid (Hica). The sequence of these residues was deduced from HMBC correlations between $\mathrm{H}-21 / \mathrm{C}-14, \mathrm{H}_{3}-32 / \mathrm{C}-20, \mathrm{H}_{3}-35 / \mathrm{C}-23$, $\mathrm{H}-37$ and $\mathrm{NH}-37 / \mathrm{C}-33$, and $\mathrm{H}-43$ and $\mathrm{NH}-43 / \mathrm{C}-36$ to make substructure a.

Substructure bas elucidated as follows: COSY analysis connected proton signals from the olefinic proton $\mathrm{H}-3$, via the allyllic methylene protons $\mathrm{H}_{2}-4$ and $\mathrm{H}-5$ oxymethine signal, to the methine proton $\mathrm{H}-6$, which showed correlations to the methyl at C-12 and the oxymethine proton H-7. The other spin system could be traced from $\mathrm{CH}_{3}-10$, via an olefinic proton $\mathrm{H}-9$, to the other methyl $\left(\mathrm{CH}_{3}-13\right)$ through an allyllic coupling ($J=1.1 \mathrm{~Hz}$). These two units were connected by HMBC ${ }^{5}$ cross-peaks observed between $\mathrm{H}-7 / \mathrm{C}-13, \mathrm{H}_{3}-13 / \mathrm{C}-7$, and $\mathrm{H}-7 / \mathrm{C}-8$. Further analysis of the HMBC spectrum connected $\mathrm{C}-3$ and $\mathrm{C}-2$ (cross-peaks between $\mathrm{H}_{2}-4 / \mathrm{C}-2$), which was al so bearing a methyl group $\left(\mathrm{CH}_{3}-11\right)$ and a carbonyl carbon $\mathrm{C}-1$ (cross-peaks between $\mathrm{H}-3 / \mathrm{C}-11, \mathrm{H}_{3}-11 / \mathrm{C}-3, \mathrm{H}-3 / \mathrm{C}-1$, and $\mathrm{H}_{3}-11 / \mathrm{C}-1$) to furnish the partial structure b.

Substructures a and b were connected on the basis of HMBC analysis. The α-proton (H-15) of Hica showed a cross-peak to the C-1 carbonyl carbon of substructure \mathbf{b}, and $\mathrm{H}-7$ of \mathbf{b} correlated with the $\mathrm{C}-42$ carbonyl carbon of the C-terminal Ala-2 residue of substructure a to make a 26-membered ring.
NOESY analysis supported the sequence of substructure a for both 1cis and 1trans; however, differences in NOE signals for these conformers were observed between the MePhe and Sar residues. In 1trans, NOEs were observed between $\mathrm{H}-24$ and $\mathrm{H}-27 / \mathrm{Me}-35$; on the other hand, in 1cis, no NOE was seen among these protons, but instead an NOE was observed between H-24/Ha-34. These NOE patterns suggested a trans-amide linkage between MePhe/ Sar for 1trans and cis for 1cis.

Further NOE analysis enabled us to predict the relative stereochemistry at three successive methines, C-5 to C-7. Although rotation between $\mathrm{C}-3$ and $\mathrm{C}-4$ seemed different between 1cis and ltrans, NOEs around C-5 to C-7 were well preserved. Diagnostic NOEs from Me-12 to $\mathrm{H}-5$ and

Chart 1. Structures of Kulokekahilide-2 (1) and Aurilide (2)

Table 1. NMR Data of Kulokekahilide-2 (1) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

atom no.	1trans			1cis		
	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$ (ppm, mult., Hz)	HMBC	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$ (ppm, mult., Hz)	HMBC
1	166.9			168.9		
2	128.2			128.9		
3	141.9	6.97 dt 8.4, 1.1	1, 11	143.0	6.92 ddd 9.0, 4.9, 1.3	1, 11
4 a	32.5	2.37 dd 14.3, 8.4	2, 3	31.4	2.14 m	2, 3, 5
4 b		2.14 m	2, 3, 5		2.30 ddd 16.1, 9.0, 8.5	3
5	72.1	3.51 bdd 8.7, 5.6		72.1	3.67 m	
6	41.4	2.11 m	5,7	40.3	2.05 m	5,7
7	83.5	5.22 d 9.8	5, 6, 8, 13, 42	83.4	4.93 d 10.7	$5,6,8,9,12,13,42$
8	133.2			132.4		
9	125.9	$5.55 \mathrm{qd} 6.6,1.1$	10, 13	126.4	5.56 bqd 6.7, 1.1	7,10, 13
10	13.1	$1.61 \mathrm{dq} 6.6,0.9$	8,9	13.1	$1.60 \mathrm{dq} 6.6,1.1$	8, 9
11	12.7	1.83 bs	1, 2, 3	12.6	1.86 bs	1, 2, 3
12	11.6	0.79 d 6.9	5, 6, 7	10.7	0.70 d 7.1	5, 6, 7
13	11.2	1.64 bs	7,8,9	11.0	1.54 bs	7, 8, 9
14	170.4			171.2		
15	72.6	5.14 dd 10.3, 5.8	1,14, 16	73.5	4.83 dd 8.5, 3.3	1, 14, 16, 17
16a	40.9	1.77 m	14, 15, 17, 18, 19	40.6	1.83 m	14, 15, 17, 18, 19
16b		1.71 m	15, 17, 18, 19		1.54 m	14, 15, 17, 18, 19
17	24.9	1.69 m	16, 18, 19	25.0	1.76 m	18, 19
18	21.9	0.91 d 6.3	16, 17, 19	21.9	0.91 d 6.3	16, 17, 19
19	23.3	0.91 d 6.3	16, 17, 18	23.3	0.92 d 6.7	16, 17, 18
20	173.0			173.6		
21	45.5	$4.71 \mathrm{dq} 7.8,6.7$	14, 20, 22	45.1	4.56 dq 7.6, 7.1	14, 20, 22
22	17.5	0.87 d 6.7	20, 21	16.5	0.78 d 7.1	20, 21
NH		7.10 d 7.8			6.53 d 7.6	14
23	172.5			170.2		
24	56.3	$5.62 \mathrm{dd} \mathrm{9.1}$,	23, 25, 32	54.3	5.40 dd 10.3, 5.8	20, 25, 32
25a	35.3	3.25 dd 14.1, 7.0	23, 24, 26, 27, 31	35.3	3.05 dd 14.5, 10.3	23, 24, 26, 27, 31
25b		3.07 dd 14.1, 9.1	23, 24, 26, 27, 31		2.98 dd 14.5, 5.8	24, 26, 27, 31
26	136.9			137.4		
27	129.9	7.32 bd 8.0	25, 29, 31	129.8	7.14 bd 7.7	25, 29, 31
28	128.6	7.25 dd 8.0, 7.1	26, 30	128.4	$7.21 \mathrm{dd} 7.7,7.0$	26, 30
29	127.2	7.21 t 7.1	27, 31	126.8	7.16 t 7.0	27, 31
30	128.6	7.25 dd 8.0, 7.1	26, 28	128.4	7.21 dd 7.7, 7.0	26, 28
31	129.9	7.32 bd 8.0	25, 27, 29	129.8	7.14 bd 7.7	25, 27, 29
32	31.2	2.95 s	20, 24	30.4	2.97 s	20, 24
33	169.7			169.5		
34a	52.9	4.28 bd 15.4	33	51.5	3.99 d 17.9	33, 35
34 b		3.72 bd 15.4	23,33, 35		3.35 d 17.9	23, 33, 35
35	36.3	2.71 s	23, 34	36.7	2.91 s	23, 34
36	170.8			171.7		
37	58.8	$4.09 \mathrm{dd} 8.2,7.1$	33, 36, 38, 39, 41	57.7	4.38 dd 9.2, 8.5	33, 36, 38, 39, 41
38	35.8	1.96 m		37.8	1.89 m	
39a	25.1	1.48 m		25.0	1.37 m	38, 40, 41
39b		1.12 m	38,40		1.37 m	38, 40, 41
40	11.3	0.88 t 7.5	38, 39	10.9	0.94 t 6.7	38, 39
41	16.0	0.92 d 5.7	37, 38	15.60	0.97 d 7.1	37, 38
NH		6.95 d 8.2	33		7.51 d 9.2	33
42	171.6			170.6		
43	48.7	4.44 dq 7.6, 7.1	36, 42, 44	50.1	4.25 dq 6.7, 7.1	36, 42
44	18.5	1.35 d 7.1	42, 43	17.4	1.38 d 7.1	42
NH		6.32 d 7.6	36		6.36 d 6.7	36

H-7 were indicative of the relative stereochemistry as 5S*,6S*,7S*.

To confirm the relative stereochemistry predicted above, the four possible diastereoisomers of triol, 3a, 3b, 3c, and

substructure a
Figure 1. Key COSY and HMBC correlations for 1.

1cis
Figure 2. NOE patterns of substructure a for 1cis and 1trans.
3d, were prepared by diastereoselective synthesis. These triols were prepared basically following the method employed for aurilide from Dolabella auricularia. ${ }^{2 a}$ The synthetic strategy for 3a and 3c applied the syn-selective aldol reaction by Evans, ${ }^{6}$ whereas the anti-selective aldol reaction by Heathcock ${ }^{7}$ was used for $\mathbf{3 b}$ and $\mathbf{3 d}$.

The syn-selective aldol reaction via a closed transition state of N-propionyl oxazolidinone 5a with trans-2-methyl-2-butenal, which used 1 equiv of Lewis acid, Bu ${ }_{2}$ BOTf, gave the aldol 6a with the $2 \mathrm{R}, 3 \mathrm{R}$ configuration. Conversely, the anti-selective aldol reaction via an open transition state of $5 \mathbf{a}$ with the same aldehyde, which used 2 equiv of Bu BOTf, provided the aldol $\mathbf{6 b}$ with the $2 \mathrm{~S}, 3 \mathrm{R}$ configuration. Likewise, the stereoselective aldol reaction of oxazolidinone 5b with trans-2-methyl-2-butenal provided aldols $\mathbf{6 c}(2 \mathrm{~S}, 3 \mathrm{~S})$ and 6d (2R,3S), respectively. Subsequent treatment of $\mathbf{6 a - d}$ with the aluminum amide reagent derived from $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine hydrochloride and AlMe_{3}, according to the procedure of Weinreb, ${ }^{8}$ gave the desired transamination product, the N-methoxy-N-methylamides 7ad. Protection of 7a-d with tert-butyldimethylsilyl (TBS) chloride and imidazole afforded the corresponding amides

1 trans

1cis

Figure 3. NOE patterns of substructure \mathbf{b} for $\mathbf{1 c i s}$ and 1 trans.
$\mathbf{8 a}-\mathbf{d} .{ }^{9}$ Reduction of amides $\mathbf{8 a}-\mathbf{d}$ to the aldehydes $\mathbf{9 a}-\mathbf{d}$ proceeded with diisobutylaluminum hydride (DIBAL) in THF. ${ }^{10}$

To establish the C-5 stereocenter by the second coupling reaction, the vinylogous Mukaiyama aldol reaction ${ }^{11}$ was applied to aldehydes $\mathbf{9 a}-\mathbf{d}$ and 1-methoxy-2-methyl-1-trimethylsiloxy-1,3-butadiene, ${ }^{12}$ affording conjugated methyl esters 10a-d, respectively. The relative stereochemistry at C-5 through C-7 in 10a-d was assigned on the basis of NMR analysis after the diols were derivatized to the corresponding acetonides. ${ }^{13}$ All attempts to employ the modified Mitsunobu reaction ${ }^{14}$ to prepare the desired 5 S configuration for both 3a and 3d by inverting the 5-OH in both 10a and 10d were not successful. Therefore, 10a and 10d were subjected to M offatt oxidation, ${ }^{15}$ which yielded corresponding ketoesters 11a and 11d. Stereoselective reduction of 11a with $\mathrm{LiAlH}_{4}{ }^{16}$ and 11d with $\mathrm{NaBH}_{4}{ }^{17}$ afforded the desired protected triol 13a and methyl ester 12d, respectively.
DIBAL reduction of methyl esters 10b, 10c, and 12d afforded deprotected triol 3b as well as protected triols 13c and 13d. Removal of TBS groups in 13a, 13c, and 13d afforded 3a, 3c, and 3d, respectively. Thus, all four possible diastereoisomers of 2,6,8-trimethyl-2,8-decadiene-1,5,7-triol were successfully prepared.
Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of synthetic triols $\mathbf{3 a}-\mathbf{d}$ with that obtained from natural 1 dearly indicated the relative stereochemistry as 5S*,6S*,7S* (Figure 4).

To deduce the absolute stereochemistry of C-5 through C-7, S- and R-MTPA esters (1a and 1b) were introduced to the C-5 hydroxyl group of $\mathbf{1}$, respectively. ${ }^{18}$ Although values for $\mathrm{H}-11$ and $\mathrm{H}-12$ (underlined) did not show the expected sign, the $\Delta \delta_{(S-R)}$ values for $\mathrm{H}-3,-4,-7,-8,-9,-10$, and -13 were suggestive of $5 \mathrm{~S}, 6 \mathrm{~S}, 7 \mathrm{~S}$, which is identical to that of aurilide (2). MM2 calculation suggested that introduction of MTPA esters at C-5 causes a dramatic change in ring conformation for both $\mathbf{1 a}$ and $\mathbf{1 b}$. F or both models, rings were bent at C-4 and C-6 to make the bulky MTPA ester groups protrude from the ring. As a result of these conformational changes, methyl groups 11 and 12 might be located outside of the shielding area by phenyl rings of the MTPA esters (Figure 5). Proof of the stereochemistry obtained above by total synthesis of $\mathbf{1}$ is in progress.
To assign the absolute configuration of Hica and the amino acids, 1 was converted to fragment 4 (Scheme 2).

Scheme 1. Synthetic Route to Triols 3a-d

One-half the quantity of 4 was acid hydrolyzed and separated by ODS HPLC to yield Hica, Ala, Ile, and MePhe. The absolute stereochemistry of Hica was determined as D by chiral HPLC analysis. Marfey analysis ${ }^{19}$ of each amino acid indicated L-Ile, L-MePhe, and both D- and L-Ala residues were present in $\mathbf{1}$. To differentiate between the configurations for Ala-1 and -2, the remaining quantity of 4 was subjected to hydrazinolysis, ${ }^{20}$ which yielded only Ala-2 as an intact amino acid. Marfey analysis disclosed

Figure 4. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of triols.
the l-stereochemistry for Ala-2; therefore Ala-1 was deduced as having D-stereochemistry.
Kulokekahilide-2 (1) showed potent cytotoxicity against the cell lines P388, SK-OV-3, M DA-MB-435, and A-10 with IC_{50} values of $4.2,7.5,14.6$, and 59.1 nM , respectively, and it showed cancer cell selectivity, as the A-10 cell line is not transformed. Kulokekahilide-2 was also tested for its effects on microtubules, intermediate filaments, and actin filaments, but it showed no effects on these cytoskeleton networks. Recently, the combinatorial syntheses of aurilide analogues were achieved. ${ }^{21}$ Further study with these analogues will disclose the detailed structure-activity relationship and their mode of action.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a digital spectropolarimeter. UV spectra were measured with a diode array spectrophotometer. NMR spectra were recorded at 500.115 MHz for ${ }^{1} \mathrm{H}$ and 125.766 MHz for ${ }^{13} \mathrm{C}$. Glycerol was used as a matrix for FABMS measure ments. Poly(ethylene glycol) was used as a marker for HRFABMS.
Isolation. Philinopsis speciosa (300 animals, 9.0 kg wet weight) collected on midsummer nights in 1994 at Shark's Cove, Pupukea, O'ahu, were extracted with EtOH ($3 \times 3 \mathrm{~L}$) and $\mathrm{CHCl}_{3} / \mathrm{MeOH}(1: 1,3 \mathrm{~L})$. The combined extracts were concentrated and extracted with CHCl_{3}. The aqueous layer was further extracted with n-BuOH, and then-BuOH extract was combined with the CHCl_{3} layer. The combined organic layers were evaporated to dryness and separated by the modified Kupchan procedure to yield n-hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and aqueous MeOH extracts. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was evaporated to dryness and purified by a two-step ODS flash chromatography process (first with aqueous MeOH as solvent, second with aqueous MeCN), followed by gel filtration (Sephadex LH-20, MeOH) and amino column chromatography $\left[1.5 \times 3.5 \mathrm{~cm}, \mathrm{CHCl}_{3}\right.$, $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (9:1), $\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (7:3:0.5), and MeOH]. The $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (9:1) fraction was separated by ODS HPLC

S-MTPA ester (1a)

R-MTPA ester (1b)

Figure 5. $\Delta \delta_{(S-R)}$ values and models of MTPA esters (la,b).
Scheme 2. Degradation Scheme of $\mathbf{1}$

[COSMOSIL $5 \mathrm{C}_{18}-\mathrm{AR}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (7:3)], giving nine fractions (1-9). Fraction 2 was separated by sequential ODS HPLC [COSMOSIL 5C ${ }_{18}$-AR, $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (1:1); 2-PrOH/H $\mathrm{H}_{2} \mathrm{O}$ (1:1); $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (55:45); 2-PrOH/H2O (47.5:52.5)] and finally purified again on an ODS column [COSMOSIL 5C ${ }_{18}-\mathrm{MS}, \mathrm{MeCN} /$ $\mathrm{H}_{2} \mathrm{O}$ (1:1)] to give kulokekahilide-2 (1; $3.4 \mathrm{mg} ; 3.8 \times 10^{-5} \%$ yield based on wet weight).

Kulokekahilide-2 (1): colorless amorphous solid; $[\alpha]_{D}-15^{\circ}$ (c 0.04, MeOH); UV (MeOH) $205 \mathrm{~nm}(\epsilon 15000)$; see Table 1 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data; HRFABMS m/z $826.4942(\mathrm{M}+\mathrm{H})^{+}$ (for $\mathrm{C}_{44} \mathrm{H}_{68} \mathrm{~N}_{5} \mathrm{O}_{10}, \Delta-2.4 \mathrm{mmu}$).
(4R,5S,2'R,3'R,4'E)-3-(2', 4'-Dimethyl-3'-hydroxy-1'-oxo-4'-hexenyl)-4-methyl-5-phenyl-2-oxazolidinone (6a). A stirred solution of N-propionyl oxazolidinone $5 \mathbf{5 a}(1.0 \mathrm{~mL}, 5.0$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under argon was treated with 1 M dibutylboron triflate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL}, 5.5 \mathrm{mmol})$ and diisopropylethylamine ($1.1 \mathrm{~mL}, 6.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 30 min, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and trans-2-methyl-2-butenal ($530 \mu \mathrm{~L}, 5.5 \mathrm{mmol}$) was added dropwise. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then 90 min at room temperature. The reaction was quenched by addition of pH 7 aqueous phosphate buffer (10 mL) and oxidized with 30% hydrogen peroxide/methanol ($1: 1,20 \mathrm{~mL}$). The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The solvent was evaporated under reduced pressure. The residue was dissolved in water (30 mL) and extracted with EtOAc (25 mL $\times 3$). The combined organic layer was washed with 5% $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and brine (25 mL), dried over MgSO_{4}, and concentrated under reduced pressure, yielding a viscous yellow oil. The crude oil was purified by preparative thin-layer chromatography (PTLC) (EtOAc/n-hexane, 25:75), and the aldol 6a was obtained as a colorless oil ($1.48 \mathrm{~g}, 4.7 \mathrm{mmol}$, 94\%): $[\alpha]_{\mathrm{D}}+27^{\circ}$ (c 0.25, CHCl_{3}); IR (KBr) 3449, 1780, 1699, 1363, 1195, 767, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.30-7.44$ (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-5), 5.63(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9$ $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 4.77$ (dq, $\left.1 \mathrm{H}, \mathrm{J}=6.9,6.4 \mathrm{~Hz}, \mathrm{H}-4\right), 4.37$ (brs, 1 H , $\left.\mathrm{H}-3^{\prime}\right), 3.98$ (dq, 1H, J = 6.9, 3.7 Hz, H-2'), 2.74 (brs, $1 \mathrm{H}, \mathrm{OH}$),
1.65 (d, 3H, J $=6.9 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{b}^{\prime}$), 1.63 (s, 3H, H-7'), 1.16 (d, 3H, $\left.\mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 0.89(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-6) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 176.9,152.6,134.3,133.1,128.8,128.7$ (2C), 125.6 (2C), 120.5, 78.9, 75.5, 54.9, 40.6, 14.3, 13.1, 13.0, 10.4.
(4R,5S, $\mathbf{z}^{\prime} \mathrm{S}, \mathbf{3}^{\prime} \mathrm{R}, \mathbf{4}^{\prime} \mathrm{E}$)-3-(2', $\mathbf{4}^{\prime}$-Dimethyl-3'-hydroxy-1'-oxo-4'-hexenyl)-4-methyl-5-phenyl-2-oxazolidinone (6b). A stirred solution of N -propionyl oxazolidinone $\mathbf{5 a}$ ($466 \mathrm{mg}, 2.0$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ under argon was treated with 1 M dibutylboron triflate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}, 4.0 \mathrm{mmol})$ and diisopropylethylamine ($440 \mu \mathrm{~L}, 2.4 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and trans-2-methyl-2-butenal ($250 \mu \mathrm{~L}, 250 \mathrm{mmol}$) was added dropwise. After 2 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched by addition of pH 7 aqueous phosphate buffer (4 mL) and oxidized with 30% hydrogen peroxide/methanol (1:1, 8 mL). The resulting solution was allowed to slowly warm from $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ over a period of 1 h . The solvent was evaporated under reduced pressure. The residue was dissolved in water (10 mL) and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layer was washed with $5 \% \mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine (10 mL), dried over MgSO_{4}, and concentrated under reduced pressure, yielding a viscous yellow oil. The crude oil was purified by PTLC (EtOAc/ n-hexane, 25:75), and the aldol $\mathbf{6 b}$ was obtai ned as a colorless oil ($383 \mathrm{mg}, 1.2 \mathrm{mmol}, 60 \%$): $[\alpha]_{\mathrm{D}}+40^{\circ}$ (c $0.18, \mathrm{CHCl}_{3}$); HREIMS m/z $300.1575(\mathrm{M}-\mathrm{OH})+$ (for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}, \Delta-2.4$ mmu); IR (KBr) 3448, 1780, 1699, 1346, 1197, 767, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.29-7.43(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, \mathrm{H}-5), 5.52\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 4.78(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=$ 7.1, $6.6 \mathrm{~Hz}, \mathrm{H}-4$), 4.13 (overlapping dq and d, $2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}$), 2.55 (brs, 1H, OH), 1.67 (s, 3H, H-7'), 1.62 (d, 3H, J $=6.6 \mathrm{~Hz}$, H-6'), 1.06 (d, 3H, J $\left.=6.4 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 0.90(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}$, $\mathrm{H}-6)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 176.6,153.4,135.2,133.2,128.7$ (3C), 125.6 (2C), 123.6, 81.2, 78.9, 55.2, 40.7, 14.8, 14.3, 13.1, 10.6.
(4S,2'S,3'S,4'E)-3-(2', 4'-Dimethyl-3'-hydroxy-1'-oxo-4'-hexenyl)-4-isopropyl-2-oxazolidinone (6c). Using the method described for the preparation of $\mathbf{6 a}, \mathrm{N}$-propionyloxazolidinone $5 \mathbf{b}$ ($500 \mathrm{mg}, 2.7 \mathrm{mmol}$) was treated with 1 M
dibutylboron triflate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}, 3.0 \mathrm{mmol})$ and diisopropylethylamine ($600 \mu \mathrm{~L}, 3.2 \mathrm{mmol}$). The resulting enol borinate was allowed to react with trans-2-methyl-2-butenal ($300 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$). After workup and purification, aldol $\mathbf{6 c}$ was obtained as a colorless oil ($686 \mathrm{mg}, 2.6 \mathrm{mmol}, 94 \%$): $[\alpha]_{\mathrm{D}}$ $+70^{\circ}$ (c 0.99, CHCl_{3}); IR (KBr) 3449, 2926, 1778, 1703, 1384, $1205 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.60\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, 4.44 (ddd, $1 \mathrm{H}, \mathrm{J}=9.2,4.1,2.8 \mathrm{~Hz}, \mathrm{H}-4$), 4.32 (brs, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 4.27 (dd, $1 \mathrm{H}, \mathrm{J}=9.2,9.2 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 4.21(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2,2.8$ $\mathrm{Hz}, \mathrm{H}-5 \mathrm{a}$), 3.97 (dq, 1H, J = 6.9, $3.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), 2.90 (brs, 1H, OH), 2.34 (dsept, $1 \mathrm{H}, \mathrm{J}=6.9,4.1 \mathrm{~Hz}, \mathrm{H}-6$), $1.62(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $\left.6.9 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 1.58$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}$), 1.16 ($\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-8^{\prime}$), $0.91(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-8), 0.87(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-7) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 177.4,153.5,134.0,120.5,75.1,63.3,58.3,40.4$, 28.3, 17.9, 14.7, 13.1, 13.0, 11.0.
(4S,2'R,3'S, $4^{\prime} \mathrm{E}$)-3-(2', $\mathbf{4}^{\prime}$-Dimethyl-3'-hydroxy-1'-oxo-4'-hexenyl)-4-isopropyl-2-oxazolidinone (6d). Using the method described for the preparation of $\mathbf{6 b}, \mathrm{N}$-propionyloxazolidinone 5b ($185 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was treated with 1 M dibutylboron triflate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}, 2.0 \mathrm{mmol})$ and diisopropylethylamine ($220 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$). The resulting enol borinate was allowed to react with trans-2-methyl-2-butenal ($125 \mu \mathrm{~L}, 1.25 \mathrm{mmol}$). After workup and purification, aldol $\mathbf{6 d}$ was obtained as a colorless oil ($219 \mathrm{mg}, 0.8 \mathrm{mmol}, 81 \%$): $[\alpha]_{D}$ $+55^{\circ}$ (c 0.18, CHCl_{3}); HREIMS m/z 252.1604 ($\mathrm{M}^{+}-\mathrm{OH}$) ${ }^{+}$(for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{3}, \Delta 0.5 \mathrm{mmu}$); IR (KBr) 3449, 2966, 1774, 1699, 1386, 1205, 748, $706 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.52(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}$ $\left.=6.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 4.45(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=7.3,3.2 \mathrm{~Hz}, \mathrm{H}-4), 4.27$ (dd, $1 \mathrm{H}, \mathrm{J}=9.2,7.3 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 4.21(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2,3.2 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a})$, 4.14 (dq, 1H, J $\left.=8.7,6.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$, H-3'), 2.63 (brs, 1H, OH), 2.39 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), 1.65 (s, 3H, H-7'), 1.62 (d, 3H, J $=6.9 \mathrm{~Hz}, \mathrm{H}^{\prime}$) , 1.03 (d, $3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-8^{\prime}$), $0.91(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-8), 0.89(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-7)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 176.7,154.5,135.3,123.4,81.3,63.3,58.9$, 40.3, 28.4, 17.9, 14.7, 14.6, 13.1, 10.7.
(2R , 3R , 4E)-3-Hydroxy-N-methoxy-N ,2,4-trimethyl-4hexenamide (7a). To a stirred suspension of N, O-dimethylhydroxylamine hydrochloride ($317.5 \mathrm{mg}, 3.25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was slowly added 15% trimethylaluminum in toluene ($1.6 \mathrm{~mL}, 3.2 \mathrm{mmol}$) with concomitant evolution of gas. The resulting homogeneous solution was stirred for 40 min at room temperature and then recooled to $0^{\circ} \mathrm{C}$, and a solution of aldol $\mathbf{6 a}(516 \mathrm{mg}, 1.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added over a period of 5 min . The solution was stirred for 1.5 h at $0^{\circ} \mathrm{C}$, and then ice-cooled 0.5 M aqueous $\mathrm{HCl}(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/n-hexane, 50:50), and amide 7a was obtained as a colorless solid ($265 \mathrm{mg}, 1.32$ $\mathrm{mmol}, 81 \%$): $[\alpha]_{\mathrm{D}}-8^{\circ}$ (c 0.16, CHCl_{3}); IR (KBr) 3430, 2935, $1635,1456,1384,991 \mathrm{~cm}^{-1}$; 1 H NMR (CDCl_{3}) $\delta 5.65(\mathrm{q}, 1 \mathrm{H}$, J $=6.9 \mathrm{~Hz}, \mathrm{H}-5), 4.26$ (brs, $1 \mathrm{H}, \mathrm{H}-3$), 3.71 (s, 3H, Me-O), 3.20 (brs, $3 \mathrm{H}, \mathrm{Me}-\mathrm{N}$), $3.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.63(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\mathrm{H}-6), 1.59$ (s, 3H, H-7), 1.09 (d, 3H, J $=7.3 \mathrm{~Hz}, \mathrm{H}-8$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.0,133.6,120.4,75.4,61.5,36.9,32.0,13.3,13.0$, 10.4.
(2S,3S,4E)-3-Hydroxy-N-methoxy-N ,2,4-trimethyl-4-hexenamide (7c). Using the method described for the preparation of 7a, N ,O-dimethylhydroxylamine hydrochloride ($254 \mathrm{mg}, 2.6$ mmol) was treated with 15% trimethylaluminum in toluene $(1.3 \mathrm{~mL}, 2.6 \mathrm{mmol})$. To the resulting solution was added a solution of aldol $\mathbf{6 c}$ ($350 \mathrm{mg}, 1.3 \mathrm{mmol}$). After workup and purification, amide $\mathbf{7 c}$ was obtained as a col orless solid (90.6 $\mathrm{mg} 0.45 \mathrm{mmol}, 35 \%$): $[\alpha]_{\mathrm{D}}+11^{\circ}$ (c $0.31, \mathrm{CHCl}_{3}$); ${ }^{1 \mathrm{H}} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 5.65(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-5), 4.26$ (brs, $1 \mathrm{H}, \mathrm{H}-3$), 3.71 (s, 3H, Me-O), 3.20 (brs, 3H, Me-N), 3.08 (m, 1H, H-2), $1.64(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-6), 1.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 1.09(\mathrm{~d}, 3 \mathrm{H}$, J $=6.9 \mathrm{~Hz}, \mathrm{H}-8)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.0,133.7,120.3,75.4$, $61.5,36.9,31.9,13.2,12.9,10.4$.
(2R,3R,4E)-3-(tert-ButyIdimethylsilyloxy)-N-methoxy$\mathbf{N}, 2,4$-trimethyl-4-hexenamide (8a). A mixture of 7a (265 $\mathrm{mg}, 1.3 \mathrm{mmol}$), TBSCI ($600 \mathrm{mg}, 4.0 \mathrm{mmol}$), and imidazol e (540 $\mathrm{mg}, 7.9 \mathrm{mmol}$) in DMF (6 mL) was stirred overnight at room
temperature. The reaction mixture was quenched with water and extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous MgSO_{4} and concentrated under reduced pressure, yielding a colorless oil. The resulting oil was purified by column chromatography (EtOAc/n-hexane, 50:50), and protected amide 8a was obtained as a col orless oil ($415 \mathrm{mg}, 1.3 \mathrm{mmol}, 100 \%$): $[\alpha]_{\mathrm{D}}-5^{\circ}$ (c $0.27, \mathrm{CHCl}_{3}$); IR (KBr) 2958, 2932, 2858, 1666, 1381, 1256, 1057, 876, 837, $775 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.36(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-5)$, $4.11(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{H}-3), 3.63(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.11$ (overlapping brs and $\mathrm{m}, 4 \mathrm{H}, \mathrm{Me}-\mathrm{N}, \mathrm{H}-2$), $1.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 1.52(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.3$ $\mathrm{Hz}, \mathrm{H}-8), 1.17(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-6), 0.88\left(\mathrm{~s}, 9 \mathrm{H},(\mathrm{Me})_{3} \mathrm{CSi}\right)$, 0.04 (s, 3H, MeSi), $-0.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 176.2, 136.4, 121.6, 80.2, 61.5, 40.4, 32.1, 25.8(3C), 18.2, 14.8, 13.0, 11.0, -4.8, -5.1.
(2S,3R,4E)-3-(tert-Butyldimethylsilyloxy)-N-methoxy-N,2,4-trimethyl-4-hexenamide (8b). To a stirred suspension of N, O-dimethylhydroxylamine hydrochloride ($216 \mathrm{mg}, 2.2$ mmol) in THF (2.2 mL) at $0^{\circ} \mathrm{C}$ under argon was slowly added 1.0 M trimethylaluminum in n -hexane $(2.2 \mathrm{~mL}, 2.2 \mathrm{mmol})$ with concomitant evolution of gas. The resulting homogeneous solution was stirred for 30 min at room temperature and then recooled to $0^{\circ} \mathrm{C}$, and a solution of aldol $\mathbf{6 b}$ (351 mg 1.1 mmol) in THF (2.2 mL) was added over a period of 5 min . The sol ution was stirred for 2.5 h at $50^{\circ} \mathrm{C}$, and then ice-cooled 0.5 M aqueous $\mathrm{HCl}(30 \mathrm{~mL})$ and EtOAc (10 mL) were added. The layers were separated, and the aqueous layer was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous MgSO_{4} and concentrated under reduced pressure. To the residue were added TBSCI ($500 \mathrm{mg}, 3.3 \mathrm{mmol}$) and imidazole ($450 \mathrm{mg}, 6.6 \mathrm{mmol}$) in DMF (6 mL) and stirred overnight at room temperature. The reaction mixture was quenched with water and extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous MgSO_{4} and concentrated under reduced pressure, yielding a yellow oil. The resulting oil was purified by PTLC (EtOAc/nhexane, $15: 85$), and a protected amide $\mathbf{8 b}$ was obtained as a colorless solid ($317 \mathrm{mg}, 1.0 \mathrm{mmol}, 92 \%$): $[\alpha]_{\mathrm{D}}+30^{\circ}$ (c 0.25 , CHCl_{3}); IR (KBr) 2929, 2856, 1663, 1387, 1250, 1057, 862, 837, $777 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.43(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-5)$, $4.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{H}-3), 3.73$ (s, 3H, MeO), 3.14 (overlapping m and brs, $4 \mathrm{H}, \mathrm{H}-2, \mathrm{Me}-\mathrm{N}$), $1.60(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4$ $\mathrm{Hz}, \mathrm{H}-6$), 1.56 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 0.83 ($\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-8$), 0.79 (s, 9H, (Me) $\left.{ }_{3} \mathrm{CSi}\right),-0.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeSi}),-0.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 176.5,135.6,123.3,81.7,61.3,38.8,31.8$, 25.6 (3C), 18.0, 14.2, 13.0, 10.0, -5.0, -5.3.
(2S,3S,4E)-3-(tert-Butyldimethylsilyloxy)-N-methoxy-N,2,4-trimethyl-4-hexenamide (8c). Using the method described for the preparation of 8a, amide 7c ($265 \mathrm{mg}, 1.3 \mathrm{mmol}$) was silylated with TBSCI ($600 \mathrm{mg}, 4.0 \mathrm{mmol}$) and imidazole ($540 \mathrm{mg}, 7.9 \mathrm{mmol}$) to give protected amide 8 c as a colorless oil ($167 \mathrm{mg}, 0.53 \mathrm{mmol}, 84 \%$): $[\alpha]_{\mathrm{D}}+3^{\circ}\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.35(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-5), 4.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $9.1 \mathrm{~Hz}, \mathrm{H}-3), 3.61$ (s, 3H, Me-O), 3.07 (overlapping brs and m, $4 \mathrm{H}, \mathrm{Me}-\mathrm{N}, \mathrm{H}-2$), $1.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 1.50(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}$, $\mathrm{H}-6), 1.15(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-8), 0.86\left(\mathrm{~s}, 9 \mathrm{H},(\mathrm{Me})_{3} \mathrm{CSi}\right)$, 0.02 (s, 3H, MeSi), $-0.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 176.2, 136.3, 121.5, 80.2, 61.4, 40.4, 32.0, 25.8 (3C), 18.2, 14.7, 12.9, 10.9, -4.8, -5.1.
(2R ,3S,4E)-3-(tert-Butyldimethylsilyloxy)-N-methoxy-N,2,4-trimethyl-4-hexenamide (8d). Toa stirred suspension of N,O-dimethylhydroxylamine hydrochloride ($302 \mathrm{mg}, 3.1$ mmol) in THF (3.0 mL) at $0^{\circ} \mathrm{C}$ under argon was slowly added 1.0 M trimethylaluminum in n -hexane $(3.0 \mathrm{~mL}, 3.0 \mathrm{mmol})$ with concomitant evolution of gas. The resulting homogeneous solution was stirred for 30 min at room temperature and then recooled to $0^{\circ} \mathrm{C}$, and a solution of aldol $\mathbf{6 d}$ ($166 \mathrm{mg}, 0.62 \mathrm{mmol}$) in THF (1.0 mL) was added over a period of 5 min . The sol ution was stirred overnight at room temperature, and then ice-cooled 0.5 M aqueous $\mathrm{HCl}(30 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$ were added. The layers were separated, and the aqueous layer was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous MgSO_{4} and concentrated under reduced pressure. To the residue were added TBSCI (272 $\mathrm{mg}, 1.8 \mathrm{mmol}$) and imidazole ($245 \mathrm{mg}, 3.6 \mathrm{mmol}$) in DMF (3
mL) and stirred overnight at room temperature. The reaction mixture was quenched with water and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous MgSO_{4} and concentrated under reduced pressure, yielding a viscous yellow oil. The resulting oil was purified by PTLC (EtOAc/n-hexane, 15:85), and protected 8d was obtained as a colorless sol id ($127 \mathrm{mg}, 0.4 \mathrm{mmol}, 65 \%$): $[\alpha]_{\mathrm{D}}-31^{\circ}$ (c 0.23, CHCl_{3}); IR (KBr) 2930, 2858, 1662, 1386, 1250, 1057, 862, 837, $777 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.41(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-5)$, 4.12 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{H}-3$), 3.71 (s, 3H, Me-O), 3.14 (overlapping brs and m, 4H, MeN, H-2), 1.58 (d, 3H, J $=6.9$ $\mathrm{Hz}, \mathrm{H}-6), 1.54(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.81(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-8), 0.78$ (s, 9H, (Me) $\left.{ }_{3} \mathrm{CSi}\right),-0.04$ (s, 3H, Me-Si), -0.08 (s, 3H, Me-Si); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 176.4,135.5,123.3,81.6,61.3,38.7,31.8$, 25.6 (3C), 18.0, 14.1, 12.9, 10.0, -5.0, -5.4.
(2R,3R,4E)-3-(tert-ButyIdimethylsilyloxy)-2,4-dimeth-yl-4-hexenal (9a). To a solution of amide $\mathbf{8 a}$ ($407 \mathrm{mg}, 1.29$ mmol) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ was added 1 M DIBAL in THF ($3.9 \mathrm{~mL}, 3.9 \mathrm{mmol}$) under argon. After 1.5 h the reaction mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (10 mL) and EtOAc (10 mL) and the solution stirred vigorously. After 10 min , anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (ca. 5 g) was added and the reaction mixture stirred vigorously for a further 30 min . The mixture was filtered through a pad of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in a funnel. The solvents were removed under reduced pressure. The residue was purified by column chromatography (EtOAd n-hexane, 2.5:97.5), and aldehyde 9a was obtained as a colorless oil ($262 \mathrm{mg}, 1.02 \mathrm{mmol}, 79 \%$): [$\alpha]_{\mathrm{D}}-1.9^{\circ}$ (c 0.16, CHCl_{3}); IR (KBr) 3440, 2929, 2858, 1728, 1251, 1058, 837, 775 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}-1), 5.41$ $(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-5), 4.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-3), 2.46$ (ddq, $1 \mathrm{H}, \mathrm{J}=6.9,6.4,1.8 \mathrm{~Hz}, \mathrm{H}-2$), $1.54(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\mathrm{H}-6$), 1.52 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 0.98 ($\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-8$), $0.83(\mathrm{~s}$, $\left.9 \mathrm{H},(\mathrm{Me})_{3} \mathrm{CSi}\right),-0.02$ (s, 3H, Me-Si), -0.07 (s, $3 \mathrm{H}, \mathrm{MeSi}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 204.2,135.5,121.7,77.9,51.0,25.7$ (3C), 18.0, 12.8, 11.9, 9.2, -4.7, -5.4.
(2S,3R,4E)-3-(tert-Butyldimethylsilyloxy)-2,4-dimeth-yl-4-hexenal (9b). To a solution of $\mathrm{LiAlH}_{4}(190 \mathrm{mg}, 4.0 \mathrm{mmol})$ in THF (4 mL) was added amide 8b ($317 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (10 mL) at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . The reaction mixture was quenched with 1 M aqueous HCl (10 mL) and then extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (EtOAc/n-hexane, 2.5: 97.5), and aldehyde $\mathbf{9 b}$ was obtained as a colorless oil (124 $\mathrm{mg}, 0.48 \mathrm{mmol}, 48 \%):[\alpha]_{\mathrm{D}}+28^{\circ}$ (c $0.45, \mathrm{CHCl}_{3}$); IR (KBr) 3440, 2930, 2858, 1730, 1251, 1053, 858, 837, $775 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{H}-1), 5.44(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.4$ $\mathrm{Hz}, \mathrm{H}-5$), 4.06 (d, 1H, J $=9.2 \mathrm{~Hz}, \mathrm{H}-3$), $2.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2$), $1.62(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-6), 1.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.84$ (overlapping s and d, 12H, (Me) ${ }_{3} \mathrm{CSi}, \mathrm{H}-8$), 0.01 (s, 3H, Me-$\mathrm{Si}),-0.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 205.4,135.3$, 123.1, 80.6, 50.2, 25.7 (3C), 18.0, 13.0, 10.9, 10.5, -4.6, -5.4.
(2S,3S,4E)-3-(tert-Butyldimethylsilyloxy)-2,4-dimethyl-4-hexenal (9c). Using the method described for the preparation of 9 a, amide $8 \mathrm{c}(132 \mathrm{mg}, 0.42 \mathrm{mmol})$ in THF (2 mL) was treated with 1 M DIBAL in THF ($1.25 \mathrm{~mL}, 1.25 \mathrm{mmol}$) and yielded aldehyde 9c as a colorless oil ($86.5 \mathrm{mg}, 0.34 \mathrm{mmol}$, $81 \%):[\alpha]_{\mathrm{D}}+2.8^{\circ}$ (c $0.54, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.63$ (d, $1 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz}, \mathrm{H}-1), 5.44(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-5), 4.23(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-3$), 2.50 (ddq, $1 \mathrm{H}, \mathrm{J}=6.9,6.4,1.4 \mathrm{~Hz}, \mathrm{H}-2$), $1.58(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-6), 1.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 1.01(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$ $=6.9 \mathrm{~Hz}, \mathrm{H}-8), 0.86\left(\mathrm{~s}, 9 \mathrm{H},(\mathrm{Me})_{3} \mathrm{CSi}\right), 0.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeSi})$, -0.04 (s, 3H, Me-Si); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 204.6,135.6,121.8$, 78.0, 51.1, 25.7 (3C), 18.1, 12.9, 11.9, 9.3, -4.6, -5.3.
(2R,3S,4E)-3-(tert-Butyldimethylsilyloxy)-2,4-dimeth-yl-4-hexenal (9d). Using the method described for the preparation of 9 a , amide $\mathbf{8 d}$ ($109 \mathrm{mg}, 0.35 \mathrm{mmol}$) in THF (1 mL) was treated with 0.93 M DIBAL in n-hexane ($560 \mu \mathrm{~L}, 0.52$ mmol) and yielded al dehyde 9 d as a colorless oil ($80.9 \mathrm{mg}, 0.32$ $\mathrm{mmol}, 90 \%$): $[\alpha]_{\mathrm{D}}-28^{\circ}$ (c 0.49, CHCl_{3}); IR (KBr) 3440, 2956, 2929, 2858, 1728, 1251, 1053, 860, 837, $775 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{H}-1), 5.44(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9$ $\mathrm{Hz}, \mathrm{H}-5), 4.06$ (d, 1H, J $=8.7 \mathrm{~Hz}, \mathrm{H}-3$), $2.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$,
$1.61(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-6), 1.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.84$ (overlapping s and d, $12 \mathrm{H},(\mathrm{Me})_{3} \mathrm{CSi}, \mathrm{H}-8$), 0.01 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$ $\mathrm{Si}),-0.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 205.4,135.3$, 123.1, 80.6, 50.2, 25.7 (3С), 18.0, 12.9, 10.9, 10.5, -4.6, -5.4.
(5R,6S,7R,2E,8E)-7-(tert-ButyIdimethylsilyloxy)-5-hy-droxy-2,6,8-trimethyl-2,8-decadienoic Acid Methyl Ester (10a). Boron trifluoride etherate ($128 \mu \mathrm{~L}, 1.02 \mathrm{mmol}$) was added dropwise to a solution of aldehyde 9a ($262 \mathrm{mg}, 1.02$ mmol) and 1-methoxy-2-methyl-1-trimethylsiloxy-1,3-butadiene ($209 \mathrm{mg}, 1.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and quenched by addition of $5 \% \mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/n-hexane, 20:80), and methyl ester 10a was obtained as a col orless oil ($304 \mathrm{mg}, 0.82 \mathrm{mmol}, 81 \%$): $[\alpha]_{\mathrm{D}}+23^{\circ}$ (c 0.27, CHCl_{3}); IR (KBr) 3440, 2929, 2858, 1718, 1256, 1055, 869, 837, $773 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.76(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.9$ $\mathrm{Hz}, \mathrm{H}-3$), $5.44(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-9), 3.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9$ Hz, H-7), 3.75 (m, 1H, H-5), 3.73 (s, 3H, Me-O), 2.42 (m, 1H, $\mathrm{H}-4 \mathrm{~b}$), 2.25 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), 1.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-13$), 1.60 (overlapping d and m, 4H, H-10, H-6), 1.52 (s, 3H, H-11), 0.91 (d, 3H, J = $6.9 \mathrm{~Hz}, \mathrm{H}-12), 0.89$ (s, 9H, (Me) $\left.{ }_{3} \mathrm{CSi}\right), 0.05$ (s, 3H, Me-Si), -0.04 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.5,138.8,136.7,129.2$, 121.4, 81.8, 72.2, 51.7, 41.0, 34.6, 25.9 (3C), 18.1, 12.9, 12.7, 12.0, 7.5, -4.5, -5.2; anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}, \mathrm{C}, 64.82$; H , 10.34; found, C, 64.51; H, 10.23.
(5S,6R,7R ,2E ,8E)-7-(tert-Butyldimethylsilyloxy)-5-hy-droxy-2,6,8-trimethyl-2,8-decadienoic Acid Methyl Ester (10b). Using the method described for the preparation of 10a, aldehyde $\mathbf{9 b}$ ($262 \mathrm{mg}, 1.02 \mathrm{mmol}$) and 1-methoxy-2-methyl-1-trimethylsiloxy-1,3-butadiene ($209 \mathrm{mg}, 1.12 \mathrm{mmol}$) were treated with boron trifluoride etherate ($128 \mu \mathrm{~L}, 1.02 \mathrm{mmol}$) and yielded methyl ester 10b as a colorless oil ($111 \mathrm{mg}, 0.3 \mathrm{mmol}, 63 \%$): $[\alpha]_{D}-10^{\circ}$ (c 0.14, CHCl_{3}); IR (KBr) 3505, 2929, 2858, 1716, 1258, 1049, 862, 837, $775 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-3), 5.51(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-9), 4.00$ (overlapping m and $\mathrm{d}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7$), 3.70 (s, 3H, Me-O), 2.38 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}$), 2.19 (m, 1H, H-4a), 1.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-13$), 1.68 (m, $1 \mathrm{H}, \mathrm{H}-6), 1.61$, ($\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-10$), 1.51 (s, 3H, H-11), 0.89 (overlapping s and d, $\left.12 \mathrm{H},(\mathrm{Me})_{3} \mathrm{CSi}, \mathrm{H}-12\right), 0.06(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}-\mathrm{Si}),-0.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.4,139.4$, 135.4, 128.8, 121.2, 82.4, 70.6, 51.6, 39.1, 33.7, 25.8 (3C), 18.0, 12.9, 12.6, 12.5, 11.4, -4.6,-5.3; anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}$, C, 64.82; H, 10.34; found, C, 64.88; H, 10.24.
(5S,6R,7S,2E ,8E)-7-(tert-ButyIdimethylsilyloxy)-5-hy-droxy-2,6,8-trimethyl-2,8-decadienoic Acid Methyl Ester (10c). Using the method described for the preparation of 10a, aldehyde 9c ($70.6 \mathrm{mg}, 0.28 \mathrm{mmol}$) and 1-methoxy-2-methyl-1-trimethylsiloxy-1,3-butadiene ($65 \mathrm{mg}, 0.33 \mathrm{mmol}$) were treated with boron trifluoride etherate ($35 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) and yielded methyl ester $\mathbf{1 0 c}$ as a col orless oil ($47.8 \mathrm{mg}, 0.13 \mathrm{mmol}$, $49 \%):[\alpha]_{\mathrm{D}}-21^{\circ}$ (c 0.30, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.75$ (t , $1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-3), 5.43(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-9), 3.97(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-7), 3.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 2.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b})$, $2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 1.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-13), 1.60$ (overlapping d and $\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-6), 1.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11), 0.91(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\mathrm{H}-12$), 0.88 ($\left.\mathrm{s}, 9 \mathrm{H},(\mathrm{Me})_{3} \mathrm{CSi}\right), 0.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeSi}),-0.05(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}-\mathrm{Si}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.5,138.8,136.7,129.2$, 121.4, 81.8, 72.3, 51.7, 41.0, 34.6, 25.9 (3C), 18.1, 12.9, 12.7, 12.0, 7.5, -4.5, -5.2; anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}, \mathrm{C}, 64.82$; H, 10.34; found, C, 64.63; H, 10.28.
(5R,6S,7S,2E ,8E)-7-(tert-Butyldimethylsilyloxy)-5-hy-droxy-2,6,8-trimethyl-2,8-decadienoic Acid Methyl Ester (10d). Using the method described for the preparation of 10a, aldehyde 9d ($80.9 \mathrm{mg}, 0.31 \mathrm{mmol}$) and 1-methoxy-2-methyl-1-trimethylsiloxy-1,3-butadiene ($70 \mathrm{mg}, 0.37 \mathrm{mmol}$) were treated with boron trifluoride etherate ($40 \mu \mathrm{~L}, 0.34 \mathrm{mmol}$) and yiel ded methyl ester 10d as a colorless oil ($72.6 \mathrm{mg}, 0.2 \mathrm{mmol}$, 63%): $[\alpha]_{\mathrm{D}}+10^{\circ}$ (c $0.15, \mathrm{CHCl}_{3}$); IR (KBr) 3440, 2929, 2858, 1717, 1256, 1049, 862, 837, $777 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.78$ (t, 1H, J $=7.3 \mathrm{~Hz}, \mathrm{H}-3$), $5.50(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-9), 4.00$ (overlapping m and $\mathrm{d}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7$), $3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{O}), 2.37$ (m, 1H, H-4b), 2.19 (m, 1H, H-4a), 1.83 (s, 3H, H-13), 1.67 (m,
$1 \mathrm{H}, \mathrm{H}-6), 1.60(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-10), 1.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11)$, 0.88 (overlapping s and d, 12 H , (Me$)_{3} \mathrm{CSi}, \mathrm{H}-12$), 0.05 (s, 3H, $\mathrm{Me} \mathrm{Si}),-0.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 168.4,139.4$, 135.4, 128.8, 121.2, 82.3, 70.6, 51.6, 39.1, 33.7, 25.8 (3C), 18.0, 12.9, 12.6, 12.5, 11.4, -4.6, -5.3 ; anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}$ C, 64.82; H, 10.34; found, C, 64.22; H, 10.24.
($6 R, 7 R, 2 E, 8 E$)-7-(tert-Butyldimethylsilyloxy)-5-oxo-2,6,8-trimethyl-2,8-decadienoic Acid Methyl Ester (11a). To a solution of 10a ($80.0 \mathrm{mg}, 0.22 \mathrm{mmol}$) in DMSO/diethyl ether (1:1, 3 mL) were added pyridinium trifluoroacetate (21 mg , 0.11 mmol) and DCC ($134 \mathrm{mg}, 0.65 \mathrm{mmol}$). After stirring at room temperature for 1.5 h , the reaction mixture was diluted with EtOAc (10 mL), and the insolubles were removed by filtration. The filtrate was washed with 0.5 M aqueous HCl (10 mL) and saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/n-hexane, 10: 90), and keto ester 11a was obtained as a colorless oil (54.2 $\mathrm{mg}, 0.15 \mathrm{mmol}, 68 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.85(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.9$ $\mathrm{Hz}, \mathrm{H}-3$), $5.32(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-9), 4.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3$ $\mathrm{Hz}, \mathrm{H}-7$), 3.71 (s, 3H, Me-0), 3.24 (m, 2H, H-4), 2.80 (dq, 1H, $\mathrm{J}=8.3,6.9 \mathrm{~Hz}, \mathrm{H}-6), 1.79$ (s, 3H, H-13), 1.55 (s, 3H,H-11), $1.51(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-10), 1.08(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-12)$, 0.85 (s, $\left.9 \mathrm{H},(\mathrm{Me})_{3} \mathrm{CSi}\right), 0.01$ (s, $3 \mathrm{H}, \mathrm{Me} \mathrm{Si}$), -0.06 (s, $3 \mathrm{H}, \mathrm{Me}$ $\mathrm{Si}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 209.2,167.9,135.9,133.2,130.3,122.5$, 80.1, 51.8, 51.5, 42.6, 25.8 (3С), 18.1, 13.6, 12.9, 12.8, 11.1, -4.7, -5.2.
($6 R, 7 \mathrm{~S}, 2 \mathrm{E}, 8 \mathrm{E}$)-7-(tert-Butyldimethylsilyloxy)-5-oxo-2,6,8-trimethyl-2,8-decadienoic Acid Methyl Ester (11d). Using the method described for the preparation of 11a, methyl ester 10d ($160.8 \mathrm{mg}, 0.43 \mathrm{mmol}$) was treated with pyridinium trifluoroacetate ($83 \mathrm{mg}, 0.43 \mathrm{mmol}$) and DCC ($266 \mathrm{mg}, 0.51$ $\mathrm{mmol})$ in DMSO/Et $\mathrm{t}_{2} \mathrm{O}(1: 1,6 \mathrm{~mL})$ and yielded keto ester 11d as a colorless oil ($126 \mathrm{mg}, 0.34 \mathrm{mmol}, 80 \%$): $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3\right)$ $\delta 6.98(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-3), 5.40(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-9)$, $4.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}-7), 3.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{O}), 3.39(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-4), 2.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 1.82$ (s, 3H, H-13), 1.57 (d, 3H, J = $6.9 \mathrm{~Hz}, \mathrm{H}-10), 1.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11), 0.86(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=13.3 \mathrm{~Hz}$, $\mathrm{H}-12$), 0.77 ($\left.\mathrm{s}, 9 \mathrm{H},(\mathrm{Me})_{3} \mathrm{CSi}\right),-0.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si}),-0.10(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}-\mathrm{Si}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 210.3,168.0,135.2,133.3$, 130.0, 123.6, 82.3, 51.7, 49.4, 44.3, 25.7 (3C), 17.9, 13.7, 12.9 (2C), 10.0, -4.8, -5.5.
(5S,6S,7S,2E,8E)-7-(tert-B utyldimethylsilyloxy)-5-hy-droxy-2,6,8-trimethyl-2,8-decadienoic Acid Methyl Ester (12d). To a solution of $11 \mathbf{d}(108 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{MeOH}(1.5$ $\mathrm{mL})$ was added $\mathrm{NaBH}_{4}(37 \mathrm{mg}, 0.88 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. After 2 h, the reaction mixture was quenched with saturated NaHCO_{3} $(10 \mathrm{~mL})$ and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over MgSO_{4} and concentrated reduced pressure. The residue was purified by PTLC (EtOAcl n-hexane, 20:80), and ester 12d was obtained as a colorless oil ($53.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 85 \%$): $[\alpha]_{\mathrm{D}}-31^{\circ}$ (c $0.30, \mathrm{CHCl}_{3}$); IR (KBr) 3440, 2954, 2929, 2858, 1717, 1256, 1047, 860, 837, 775 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.94(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-3), 5.36(\mathrm{q}$, $1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-9), 3.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}, \mathrm{H}-7), 3.79$ (dt, $1 \mathrm{H}, \mathrm{J}=7.3,3.7 \mathrm{~Hz}, \mathrm{H}-5$), $3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{O})$, $2.40(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4 \mathrm{~b}), 2.30$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), 1.83 (s, $3 \mathrm{H}, \mathrm{H}-13$), 1.75 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), 1.57 (d, 3H, J $=6.9 \mathrm{~Hz}, \mathrm{H}-10$), 1.53 (s, 3H, H-11), 0.86 (s, 9 H , (Me) $\left.{ }_{3} \mathrm{CSi}\right), 0.62(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-12), 0.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si})$, -0.03 (s, 3H, MeSi); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 168.4,139.2,136.3$, 128.6, 123.3, 86.2, 74.1, 51.6, 41.0, 33.5, 25.8 (3C), 18.0, 13.0, 12.9, 12.6, 10.6, -4.4, -5.3.
(5S,6S,7R ,2E ,8E)-7-(tert-Butyldimethylsilyloxy)-2,6,8-trimethyl-2,8-decadien-1,5-diol (13a). To a solution of Li$\mathrm{AlH}_{4}(28.5 \mathrm{mg}, 0.75 \mathrm{mmol})$ in THF $(750 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$ was added ester 11a ($27.6 \mathrm{mg}, 0.075 \mathrm{mmol}$) in THF ($500 \mu \mathrm{~L}$). The solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then warmed to 0 ${ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(15 \mathrm{~mL} \times 3)$. The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and dried over MgSO_{4}. Removal of the solvent gave a residue, which was purified by SIL-HPLC (EtOAc/n-hexane, 45:55), and protected triol 13a was obtained as a colorless oil ($2.2 \mathrm{mg}, 0.0064 \mathrm{mmol}, 8.6 \%$): $[\alpha]_{\mathrm{D}}+14^{\circ}$ (c $0.21, \mathrm{CHCl}_{3}$); IR (KBr) 3422, 2927, 1385, 1249, 1049, 870, 837,
$775 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.53(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=6.4,1.4 \mathrm{~Hz}$, $\mathrm{H}-3), 5.41(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-9), 4.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}$, $\mathrm{H}-7$), 4.04 (s, 2H, H-1), 3.58 (dt, $1 \mathrm{H}, \mathrm{J}=8.2,3.2 \mathrm{~Hz}, \mathrm{H}-5$), 2.25 (m, 1H, H-4b), 2.15 (m, 1H, H-4a), 1.76 (m, 1H, H-6), 1.69 (s, 3H, H-13), 1.61 (overlapping s and d, $6 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-10$), 0.89 (s, 9H, (Me) $\left.{ }_{3} \mathrm{CSi}\right), 0.80(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-12), 0.05(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}-\mathrm{Si}),-0.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Si})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 137.1,126.9$, 122.3, 121.5, 80.4, 73.2, 68.9, 42.7, 32.7, 25.9 (3C), 18.1, 14.0, 13.0, 12.9, 11.8, -4.6, -5.2.
(5S,6R,7S,2E ,8E)-7-(tert-Butyldimethylsilyloxy)-2,6,8-trimethyl-2,8-decadien-1,5-diol (13c). To a solution of 10c $(35.0 \mathrm{mg}, 0.095 \mathrm{mmol})$ in THF (2.0 mL) at $-78^{\circ} \mathrm{C}$ was added 0.93 M DIBAL in n -hexane ($300 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$). After the reaction mixture was stirred for 1 h and warmed to $0^{\circ} \mathrm{C}$ for 1 h, saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$ were added and the solution was stirred vigorously. After 10 min , anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (ca. 5 g) was added and the reaction mixture stirred vigorously for 30 min . The mixture was filtered through a pad of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ by vacuum filtration. The solvents were removed under reduced pressure. The residue was purified by SIL-HPLC (EtOAc/n-hexane, 45:55), and protected triol 13c was obtained as a colorless oil (13.1 mg , $0.057 \mathrm{mmol}, 60 \%$): $[\alpha]_{\mathrm{D}}-17^{\circ}$ (c $0.21, \mathrm{CHCl}_{3}$); IR (KBr) 3421, 2927, 1385, 1256, 1057, 870, 835, $773 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 5.43$ (overlapping t and $\mathrm{q}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-9), 4.02(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-1)$, 3.97 (d, 1H, J $=6.9 \mathrm{~Hz}, \mathrm{H}-7$), 3.64 (ddd, $1 \mathrm{H}, \mathrm{J}=6.4,6.4,1.8$ $\mathrm{Hz}, \mathrm{H}-5), 2.30$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}$), 2.13 (m, 1H, H-4a), 1.68 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{H}-13$), 1.62 (overlapping d and $\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-6$), $1.52(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{H}-11$), $0.91(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-12), 0.89\left(\mathrm{~s}, 9 \mathrm{H},(\mathrm{Me})_{3} \mathrm{CSi}\right)$, 0.06 (s, 3H, MeSi), $-0.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me-Si}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $137.0,136.8,122.2,121.3,81.9,72.8,68.7,40.7,33.6,25.9$ (3C), 18.1, 13.9, 12.9, 11.9, 7.7, -4.5, -5.1.
(5S,6S,7S,2E ,8E)-7-(tert-ButyIdimethylsilyloxy)-2,6,8-trimethyl-2,8-decadien-1,5-diol (13d). Using the method described for the preparation of 13c, ester 12d ($42.5 \mathrm{mg}, 0.12$ mmol) in THF (2.0 mL) was treated with 1 M DIBAL in THF ($570 \mu \mathrm{~L}, 0.57 \mathrm{mmol}$) and yielded protected triol 13d as a colorless oil (35.5 mg). The resultant oil was used without purification in the subsequent reaction.
(5S,6S,7R ,2E ,8E)-2,6,8-Trimethyl-2,8-decadien-1,5,7triol (3a). To a solution of $13 \mathrm{a}(2.1 \mathrm{mg}, 0.006 \mathrm{mmol})$ in MeOH ($500 \mu \mathrm{~L}$) was added pyridinium p-toluene sulfonate (PPTS) (9.5 $\mathrm{mg}, 0.038 \mathrm{mmol}$) overnight at room temperature. After concentration, removal of the salt by Waters Sep-Pak Vac $12 \mathrm{~cm}^{3}$ Silica- 2 g gave a residue, which was purified by ODS-HPLC (MeCN/H2O, 40:60). Triol 3a was obtained as a colorless oil ($1.3 \mathrm{mg}, 0.0057 \mathrm{mmol}, 95 \%$): $[\alpha]_{\mathrm{D}}+3^{\circ}\left(\mathrm{c} 0.14, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.53$ (overlapping t and $\mathrm{q}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-9$), 4.36 (brs, $1 \mathrm{H}, \mathrm{H}-7), 4.05(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-1), 3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.35(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-4), 1.77$ (m, 1H, H-6), 1.71 (s, 3H, H-13), 1.65 (d, 3H, J = $6.9 \mathrm{~Hz}, \mathrm{H}-10), 1.56$ (s, 3H, H-11), 0.88 (d, 3H, J $=7.1 \mathrm{~Hz}, \mathrm{H}-12$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.7,136.1,121.9,118.8,75.7,74.9,68.6$, 39.6, 33.5, 14.0, 13.6, 13.0, 10.6.
(5S,6S,7R ,2E ,8E)-2,6,8-Trimethyl-2,8-decadien-1,5,7triol (3b). To a solution of $\mathbf{1 0 b}(35.8 \mathrm{mg}, 0.097 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added 1 M DIBAL in THF (2.4 mL , 2.4 mmol). After the reaction mixture was stirred for 30 min and warmed to $0{ }^{\circ} \mathrm{C}$ for 1 h , saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (10 mL) and EtOAc (10 mL) were added and the solution was stirred vigorously. After 10 min , anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (ca. 5 g) was added and the reaction mixture stirred vigorously for 30 min . The mixture was filtered through a pad of anhydrous $\mathrm{Na}_{2}-$ SO_{4} in a funnel. The solvents were removed under reduced pressure. The residue was purified by ODS-HPLC (MeCN/H2O, 40:60), and triol 3b was obtained as a colorless oil (11.0 mg , $0.048 \mathrm{mmol}, 50 \%):[\alpha]_{\mathrm{D}}-21^{\circ}\left(\mathrm{c} 0.31, \mathrm{CHCl}_{3}\right.$); HRFABMS m/z $457.3521(2 \mathrm{M}+\mathrm{H})^{+}\left(\right.$for $\left.\mathrm{C}_{26} \mathrm{H}_{49} \mathrm{O}_{6}, \Delta-0.8 \mathrm{mmu}\right)$; IR (KBr) 3390, 2918, 1418, 1383, $1009 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.49$ (overlapping t and $\mathrm{q}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-9$), 3.98 (overlapping s and d, 3H, H-1, H-7), 3.87 (m, 1H, H-5), 2.33 (m, 1H, H-4b), 2.12 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), 1.85 (m, 1H, H-6), 1.68 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-13$), 1.62 (d, $3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-10), 1.57(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11), 0.80(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9$ $\mathrm{Hz}, \mathrm{H}-12)$,; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 137.3,136.5,122.6,121.9,80.9$, 72.8, 68.6, 39.0, 31.7, 14.0, 13.0, 11.7, 11.1.
(5S,6R ,7S, 2E ,8E)-2,6,8-Trimethyl-2,8-decadien-1,5,7triol (3c). Using the method described for the preparation of 3a, protected alcohol 13c ($9.1 \mathrm{mg}, 0.027 \mathrm{mmol}$) in $\mathrm{MeOH}(1.0$ mL) was treated with PPTS (20.0 mg 0.08 mmol) and yielded triol 3 c as a colorless oil ($4.1 \mathrm{mg}, 0.018 \mathrm{mmol}, 68 \%$): $[\alpha]_{D}-6^{\circ}$ (c $0.40, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.54(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\mathrm{H}-9$), 5.46 (t, $1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-3$), 4.18 (brs, 1H, H-7), 4.03 (s , $2 \mathrm{H}, \mathrm{H}-1$), 3.87 (ddd, $1 \mathrm{H}, \mathrm{J}=8.2,5.5,1.8 \mathrm{~Hz}, \mathrm{H}-5$), 2.35 (m , 1H, H-4b), 2.15 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), 1.69 (overlapping s and $\mathrm{m}, 4 \mathrm{H}$, $\mathrm{H}-13, \mathrm{H}-6$), 1.64 ($\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-10$), 1.55 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-11$), $0.85(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-12)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.5,136.1$, $121.8,119.1,80.6,75.4,68.7,38.8,33.7,14.0,13.3,13.0,5.1 ;$ anal. cal cd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3}, \mathrm{C}, 68.38$; $\mathrm{H}, 10.59$; found, $\mathrm{C}, 68.01$; H, 10.44.
(5S,6S,7S,2E ,8E)-2,6,8-Trimethyl-2,8-decadien-1,5,7-triol (3d). Using the method described for the preparation of 3a, a mixture of $13 \mathrm{~d}(35.5 \mathrm{mg})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was treated with PPTS (75 mg 0.3 mmol) and yielded triol $3 \mathbf{d}$ as a white solid ($14.3 \mathrm{mg}, 0.063 \mathrm{mmol}, 55 \%$ from 12d): $\mathrm{mp} 91-92{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-23^{\circ}\left(\mathrm{c} 0.18, \mathrm{CHCl}_{3}\right) ;$ HRFABMS m/z $457.3513(2 \mathrm{M}+\mathrm{H})^{+}$ (for $\mathrm{C}_{26} \mathrm{H}_{49} \mathrm{O}_{6}, \Delta-1.7 \mathrm{mmu}$); IR (KBr) 3275, 2918, 1418, 1386, $1014 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-3)$, $5.43(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-9), 3.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 3.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=9.1 \mathrm{~Hz}, \mathrm{H}-7), 3.67(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=8.7,3.2 \mathrm{~Hz}, \mathrm{H}-5), 2.34(\mathrm{~m}$, 1H, H-4b), 2.18 (m, 1H, H-4a), 1.73 (m, 1H, H-6), 1.67 (s, 3H, $\mathrm{H}-13$), 1.60 (overlapping s and d, 6H, H-11, H-10), 0.64 (d, 3H, $J=6.9 \mathrm{~Hz}, \mathrm{H}-12) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.7,136.6,123.5$, $121.5,85.0,76.8,68.6,40.2,33.1,14.0,13.4,13.0,10.3$.

Preparation of 3d from 1. To the solution of Kulokeka-hilide-2 ($\mathbf{1}, 0.3 \mathrm{mg}$ in 1 mL of $\mathrm{Et}_{2} \mathrm{O}$) was added $25 \mu \mathrm{~L}$ of 1 M LiAlH_{4} in $\mathrm{Et}_{2} \mathrm{O}$. After stirring for 30 min at room temperature, the reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was concentrated and then separated by ODS HPLC with 60% MeCN to yield 3d: ${ }^{1} \mathrm{H}$ NMR ($C_{3} O D$), see Figure 4.

MTPA Esters of $\mathbf{1}$. Kul okekahilide-2 (1, 0.3 mg each) was reacted with R- or S-MTPACI ($10 \mu \mathrm{~L}$) in $300 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 10 mg of DMAP. The reaction mixtures were partitioned with EtOAc/0.1 $\mathrm{M} \mathrm{NaHCO}_{3}$, and the EtOAclayers were washed with 0.1 M HCl and $\mathrm{H}_{2} \mathrm{O}$. The obtained EtOAc layers were evaporated and then separated by ODS HPLC [COSMOSIL 5C 18 -AR II, MeCN/H2O (7:3 and 8:2)] to yield Sand R-MTPA esters ($\mathbf{l} \mathbf{a}$ and $\mathbf{1 b}$, respectively).

1a: ${ }^{1 H}$ NMR ($\left.C_{3} \mathrm{CN}\right) \delta 6.585$ (H-3), 2.521 (H-4a), 2.2076 (H-4b), 4.582 (H-5), 2.300 (H-6), 5.316 (H-7), 5.703 (H-9), 1.627 (H-10), $1.892\left(\mathrm{H}_{3}-11\right), 0.734\left(\mathrm{H}_{3}-12\right), 1.580(\mathrm{H}-13) ;$ FABMS m/z $1042(\mathrm{M}+\mathrm{H})^{+}$.

1b: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 6.608(\mathrm{H}-3), 2.558(\mathrm{H}-4 \mathrm{a}), 2.276$ (H4b), 4.825 (H-5), 2.298 (H-6), 5.269 (H-7), 5.571 (H-9), 1.574 (H-10), $1.790\left(\mathrm{H}_{3}-11\right), 0.776\left(\mathrm{H}_{3}-12\right), 1.337(\mathrm{H}-13) ;$ FABMS m/z $1042(\mathrm{M}+\mathrm{H})^{+}$.

Methanolysis of $\mathbf{1}$. Kulokekahilide-2 (1, 0.3 mg) was treated with $0.1 \mathrm{M} \mathrm{MeONa}(0.5 \mathrm{~mL})$ overnight, then partitioned between $\mathrm{H}_{2} \mathrm{O}$ and CHCl_{3}. The organic layer was concentrated and separated by ODS HPLC [COSMOSIL 5C 18- $^{-}$ $\mathrm{MS}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (8:2 and 19:1)] to yield fragment 4.

Absolute Stereochemistry of Amino and Hydroxyl Acid Residues. A half portion of fragment $\mathbf{4}$ was hydrolyzed $\left(6 \mathrm{M} \mathrm{HCl}, 10{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}\right.$) and dried under N_{2}. The residue was dissolved in MeOH and separated on reversed-phase HPLC (Inertsil prep-ODS) using a gradient of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{TFA}$ from 1:99:0.05 to 23:77:0.05 to yield three amino acids and Hica. Hica was analyzed by chiral HPLC [Chiralpak MA(+), MeCN/ $\mathrm{H}_{2} \mathrm{O}$ (15:85) with 2 mM CuSO 4], confirming d-Hica.

To each of the isol ated amino acids were added $50 \mu \mathrm{~L}$ of 2.9 mM FDAA solution in acetone and $100 \mu \mathrm{~L}$ of $1 \mathrm{M} \mathrm{NaHCO}_{3}$, followed by heating at $80^{\circ} \mathrm{C}$ for 3 min . After being cooled to room temperature, the reaction mixtures were neutralized with $50 \mu \mathrm{~L}$ of 2 M HCl and diluted with $100 \mu \mathrm{~L}$ of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} /$ TFA (50:50:0.05). These solutions were anal yzed by reversedphaseHPLC [Inertsil ODS-2, MeCN/H ${ }_{2} \mathrm{O} / \mathrm{TFA}$ (25:75:0.05)] to furnish D- and L-Ala, N-Me-L-Phe, and L-Ile.

Hydrazinolysis of Fragment 4 from Kulokekahilide2. The remaining half of $\mathbf{4}$ was added with 10 mg of dry

Amberlite GC50, followed by $400 \mu \mathrm{~L}$ of anhydrous hydrazine. The reaction mixture was heated under argon for 60 h at 80 ${ }^{\circ} \mathrm{C}$. After cooling to room temperature the reaction mixture was frozen and lyophilized, suspended in water (1.2 mL), filtered, and again frozen and freeze-dried. Tothe residue was added $50 \mu \mathrm{~L}$ of 2.9 mM FDAA solution in acetone and $100 \mu \mathrm{~L}$ of $1 \mathrm{M} \mathrm{NaHCO}_{3}$, followed by heating at $80^{\circ} \mathrm{C}$ for 3 min . After being cooled to room temperature, the reaction mixture was neutralized with $50 \mu \mathrm{~L}$ of 2 M HCl and diluted with $100 \mu \mathrm{~L}$ of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{TFA}$ (50:50:0.05). This solution was analyzed by reversed-phase HPLC [Inertsil ODS-2, MeCN/H ${ }_{2} \mathrm{O} /$ TFA (25: 75:0.05)]. The only unmodified residue, Ala-2, was analyzed to show L-Ala.

Acknowledgment. We thank N. Fusetani, S. Fukuzawa, and T. Wakimoto at the University of Tokyo for bioassay and mass spectral measurements. Financial assistance by the National Science Foundation, the Sea Grant College Program, and Pharma Mar. S. A. is gratefully acknowledged. Y. N. was financially supported by J apan Society for the Promotion of Science Postdoctoral Fellowships for Research Abroad.

Supporting Information Available: NMR spectra of kulokeka-hilide-2 (1). This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) (a) Coval, S. J.; Schulte, G. R.; Matsumoto, G. K.; Roll, D. M.; Scheuer, P. J Tetrahedron Lett. 1985, 26, 5359-5362. (b) Coval, S. J.; Scheuer, P. J. J Org. Chem. 1985, 50, 3024-3025. (c) Reese, M. T.;'Gulavita, N. K.; Nakao, Y.; Hamann, M. T.; Yoshida, W. Y.; Coval, S. J.; Scheuer, P. J. . . Am. Chem. Soc. 1996, 118, 11081-11084. (d) Nakao, Y.; Y oshida, W. Y.; Szabo, C. M.; Baker, B. J.; Scheuer, P. J.J. Org. Chem. 1998, 63, 3272-3280. (e) Nakao, Y.; Y oshida, W. Y.; Scheuer, P. J. Tetrahedron Lett. 1996, 37, 8993-8996. (f) For the origin of the name "kulokekahilide-1", refer to: Kimura, J.; Takada, Y.; Inayoshi, T.; Nakao, Y.; Goetz, G.; Yoshida, W. Y.; Scheuer, P. J .J . Org. Chem. 2002, 67, 1760-1767.
(2) (a) Suenaga, K.; Mutou, T.; Shibata, T.; Itoh, T.;; Kigoshi, H.; Yamada, K. Tetrahedron Lett. 1996, 37, 6771-'6774. (b) Pettit, G. R.; Xu, J.P.; Hogan, F.; Williams, M. D.; Doubek, D. L.; Schmidt, J . M.; Cerny, R. L.; Boyd, M. R. J . Nat. Prod. 1997, 60, 752-754. (c) Pettit, G. R.; Xu, J.-P.; Hogan, F.; Cerny, R. L. Heterocycles 1998, 47, 491-496.
(3) (a) Rodríguez, J.; Fernández, R.; Quiñoá, E.; Riguera, R.; Debitus, C.; Borchet, P. Tetrahedron Lett. 1994, 35, 9239-9242. (b) F'ernández, R.; Rodríguez, J.; Quiñoá, E.; Riguera, R.; Muñoz, L.; FernándezSuárez, M.; Debitus, C. J . Am. Chem. Soc. 1996, 118, 11635-11643.
(4) Kupchan, S. M.; Britton, R. W.; Ziegler, M. F.; Sigel, C. W. J. Org. Chem. 1973, 38, 178-179.
(5) Bax, A.; Azol os, A.; Dinya, Z.; Sudo, K. J. Am. Chem. Soc. 1986, 108, 8056-8063.
(6) (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129. (b) Pettit, G. R.; Burkett, D. D.; Barkóczy, J.; Breneman, G. L.; Pettit, W. E. Synthesis 1996, 719-725.
(7) (a) Danda, H.; Hansen, M. M.; Heathcock, C. H. J. Org. Chem. 1990, 55, 173-181. (b) Raimundo B. C.; Heathcock, C. H. Synlett 1995, 1213-1214.
(8) Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977, 22, 3815-3818.
(9) Corey, E. J.:; Trimble, L. A. J. Am. Chem. Soc. 1972, 94, 6190.
(10) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818.
(11) (a) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503. (b) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322-4343.
(12) Hoffman R. V.; Kim, H. J . Org. Chem. 1991, 56, 1014-1019.
(13) (a) Rychnovsky, S. D.; Rogers, B.; Yang, G. J Org. Chem. 1993, 58, 3511-3515. (b) Rychnovsky S. D.; Skalitzky, D. J .Tetrahedron Lett. 1990, 31, 945-948. (c) Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099-7100.
(14) Mitsunobu, O. Synthesis 1981, 1-28.
(15) Pfitzinger K. E.; M offat, J. G. J. Am. Chem. Soc. 1965, 87, 56615670.
(16) Bloch, R.; Gilbert, L.; Girard, C. Tetrahedron Lett. 1988, 29, 10211024.
(17) Mutou, T.; Suenaga, K.; Fujita, T.; Itoh, T.; Takada, N.; Hayamizu, K.; Kigoshi, H.; Yamada, K. Synlett 1977, 199-201.
(18) Ohtani, I.; Kusumi, T.; K Kashman, Y.; Kakisawa, H. J . Am. Chem. Soc. 1991, 113, 4092-4096.
(19) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.
(20) (a) Goetz, G.; Nakao, Y.; Scheuer, P. J. J . Nat. Prod. 1997, 60, $562-$ 567. (b) Schroeder, W. A. Methods Enzymol. 1972, 25, 138-143.
(21) Takahashi, T.; Nagamiya, H.; Doi, T.; Griffiths, P. G.; Bray, A. M. J . Comb. Chem. 2003, 5, 414-428.
NP049949F

[^0]: ${ }^{\dagger}$ Dedicated to the late Dr. D. J ohn Faulkner (Scripps) and the late Dr. Paul J. Scheuer (Hawaii) for their pioneering work on bioactive marine natural products.

 * To whom correspondence should be addressed. Present address: Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, J apan. Tel: +81-3-5841-5299. Fax: +81-3-5841-8166. E-mail: ayocha@ mail.ecc.u-tokyo.ac.jp.
 ${ }^{\ddagger}$ Department of Chemistry, University of Hawaii at Manoa.
 ${ }^{\S}$ Natural Products Program, Cancer Research Center of Hawaii, University of Hawaii at Manoa.
 "Present address: Department of Physiology and Medicine, Southwest Foundation for Biomedical Research, PO Box 760549, San Antonio, TX 78245.
 ${ }^{\perp}$ Aoyama Gakuin University.

